SF21 THRU SF28

2.0AMP. Super Fast Recitifiers

FEATURE

.High current capability,
.Low forward voltage drop
.Low power loss, high efficiency
.High surge capability
.High temperature soldering guaranteed $260^{\circ} \mathrm{C} / 10 \mathrm{sec} / 0.375^{\prime \prime}$ lead length at 5 lbs tension
Superfast recovery time for high efficiency.

MECHANICAL DATA

.Case: Molded plastic
.Epoxy: UL94V-0 rate flame retardant .Lead: MIL-STD- 202E, Method 208 guaranteed
.Polarity:Color band denotes cathode end
.Packaging:12mm tape per EIA STD RS-481
.Mounting position: Any

DO-15

Dimensions in inches and (millimeters)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS (single-phase, half-wave, 60 HZ , resistive or inductive load rating at $25^{\circ} \mathrm{C}$, unless otherwise stated)										
Type Number	SYM BOL	SF21	SF22	SF23	SF24	SF25	SF26	SF27	SF28	units
Maximum Recurrent Peak Reverse Voltage	VRRM	500	100	150	200	300	400	500	600	V
Maximum RMS Voltage	VrMS	35	70	105	140	210	280	350	420	V
Maximum DC blocking Voltage	$V_{D C}$	500	100	150	200	300	400	500	600	V
Maximum Average Forward Rectified Current $.375^{\prime \prime}(9.5 \mathrm{~mm})$ lead length at $\mathrm{TL}=55^{\circ} \mathrm{C}$	$I_{\text {F }(A V)}$	2.0								A
Peak Forward Surge Current 8.3 ms single half sine-wave superimposed on rated load (JEDEC method)	$I_{\text {FSSM }}$	50.0								A
Maximum Forward Voltage at 2.0A DC	V_{F}	0.95				1.3		1.7		V
$\begin{array}{ll}\begin{array}{l}\text { Maximum DC Reverse Current } \\ \text { at rated DC blocking voltage }\end{array} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ \mathrm{Ta}=125^{\circ} \mathrm{C}\end{array}$	I_{R}	$\begin{gathered} 5.0 \\ 100.0 \\ \hline \end{gathered}$								$\mu \mathrm{A}$
Maximum Reverse Recovery Time (Note 1)	$t r$	35								ns
Typical Junction Capacitance (Note 2)	C_{J}	60						30		pF
Typical Thermal Resistance (Note 3)	$\mathrm{R}_{(J A)}$	75								${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	TSTG	-55 to +150								${ }^{\circ} \mathrm{C}$
Operation Junction Temperature	T_{J}	-55 to +125								${ }^{\circ} \mathrm{C}$

Note:

1. Reverse Recovery test Condition: If $=0.5 \mathrm{~A}, \mathrm{IR}=1.0 \mathrm{~A}, \mathrm{IRR}=0.25 \mathrm{~A}$;
2. Measured at 1.0 MHz and applied reverse voltage of 4.0 Vdc
3. P.C.B.Mounted on 0.2×0.2 " $(5.0 \times 5.0 \mathrm{~mm})[0.013 \mathrm{~mm}$ thick $]$ Copper Pad Area.

RATING AND CHARACTERISTIC CURVES (SF21 THRU SF28)

FIG.1-TYPICAL FORW ARD CURRENT DERATING CURVE

FIG.3-MAXIMUN NON-REPETITIVE FORWARD SURGE CURRENT

FIG.2-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

FIG.4-TYPICAL REVERSE CHARACTERISTICS

FIG.6-TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERSITIC

